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The understanding of dynamic failure in amorphous materials via the propagation of free boundaries like
cracks and voids must go beyond elasticity theory, since plasticity intervenes in a crucial and poorly understood
manner near the moving free boundary. We focus on failure via a cavitation instability in a radially symmetric
stressed material and set up the free boundary dynamics taking both elasticity and viscoplasticity into account
using the recently proposed athermal shear transformation zone theory. We demonstrate that this theory pre-
dicts the existence �in amorphous systems� of fast cavitation modes accompanied by extensive plastic defor-
mations and discuss the revealed physics.
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The principal difficulty in describing the mechanical fail-
ure of materials using elasticity theory is that this approach
does not provide a law of motion for the free boundary that
naturally occurs when a crack or a void is propagating �1�.
Recently, phenomenological phase-field models �2� were
proposed in order to overcome this fundamental problem. In
reality the high stress concentration near the moving bound-
ary must be associated with some form of plastic deforma-
tions that are rather poorly understood in the context of
amorphous materials; the consequences of these plastic de-
formations are usually referred to as the “process zone” �3�
whose properties one usually does not dare to probe too
closely. The aim of this Rapid Communication is to investi-
gate the role of plasticity near free boundaries where stresses
are concentrated �4�. We set up the simplest �from the point
of view of symmetries� example of free boundary
dynamics—i.e., that of a circular cavity responding to radi-
ally symmetric stresses at infinity �or equivalently high pres-
sure inside the cavity�. This problem has a rather long history
�5–7�; the main contribution of our study is the elucidation of
the role of amorphous plasticity and the detailed interaction
between elasticity and plasticity, throughout the system and
in particular near the free boundary where plastic dynamics
is explicitly described in terms of the athermal shear trans-
formation zone �STZ� theory �8,9�. This theory automatically
includes hardening and rate-dependent effects in addition to
a proper Eulerian description of the equations of motion
which allows a discussion of inertial effects and of large
deformations including accelerating and catastrophic cavita-
tion instability.

Consider then an infinite two-dimensional �2D� medium
with a circular hole around the origin of radius R�t�, loaded
by a radially symmetric stress �� at infinity. The symmetry
dictates a radial velocity field v that is independent of the
azimuthal angle �—i.e. vr�r , t�=v�r , t� and v��r , t�=0. This
velocity field implies the components of the total rate of the
deformation tensor �5�:

Drr
tot � �rv, D��

tot � v/r . �1�

In this paper we restrict the elastic part of the deformation to
be small, allowing us to decompose the total rate of defor-

mation tensor into its elastic and plastic parts. Denoting the
material time derivative as Dt=�t+v�r,

Dij
tot = Dt�ij

el + Dij
pl, �2�

where the plastic part Dij
pl will be discussed below. The �lin-

ear� elastic part �ij
el in the present symmetry is determined by

the deviatoric stress s�s��=−srr= ����−�rr� /2 and the pres-
sure p�−����+�rr� /2 according to

�rr
el = − p/2K − s/2� ,

���
el = − p/2K + s/2� , �3�

where �ij is the stress tensor and K and � are the 2D bulk
and shear moduli, respectively. The plastic rate of deforma-
tion is assumed traceless, corresponding to incompressible
plasticity. In the present symmetry the plastic rate of defor-
mation tensor has only one independent component Drr

pl

=−D��
pl �−Dpl. Substituting now Eqs. �1� and �3� into Eq. �2�

one ends up with

�rv = − Dtp/2K − Dts/2� − Dpl, �4�

v/r = − Dtp/2K + Dts/2� + Dpl. �5�

At this point we introduce the equations of motion for the
material density � and the velocity v in the form

Dt� = − �� · v , �6�

�Dtv = � · � = − �r�r2s�/r2 − �rp , �7�

where the boundary itself evolves according to Ṙ�t�=v�R , t�.
The boundary conditions are given by

�rr�R,t� = − p�R,t� − s�R,t� = 0,

�rr�� ,t� = − p�� ,t� − s�� ,t� = ��. �8�

As initial conditions for the dynamics we take the static lin-
ear elastic solution for a medium with the given stress at
infinity and a hole of radius R�0�, assuming that the initial
elastic response is much faster than the plastic deformation
time scale,

p�r,0� = − ��, s�r,0� = ��R2�0�/r2, v�r,0� = 0. �9�
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Finally, we supply the constitutive relations determining
Dpl. The STZ theory determines this object in terms of a low
density � of shear transformation zones; these are localized
regions embedded in the elastic matrix, causing an irrevers-
ible deformation in response to shear stress. Under such a
stress they are assumed to transform between two internal
states, resulting in a plastic strain increment along one of the
two principal axes in our symmetry. Macroscopic plastic
flow, denoted by Dpl, results from the average flippings of
STZs. This flow, by itself, can also create and annihilate
other STZs. The bias of the populations of STZs between
these two states, caused by the application of a deviatoric
stress, is denoted by a tensor m which in our symmetry has
only one independent component denoted by m. This field is
a local order parameter acting as a “back stress.” The total
density of STZs is affected by a normalized effective tem-
perature 	, characterizing the state of configurational disor-
der of the material, via a Boltzmann-like factor. In particular
the fixed-point value of � is determined by 	. For details of
the derivation of the equations see �9�. Here we just state the
final equations where s had been normalized with the dy-
namic yield stress sy, which is a material parameter,


0Dpl = �0�C�s��sgn�s� − m� , �10�

Dtm =
2Dpl

�0�
�1 −

sme−1/	

�
� , �11�

Dt� =
2sDpl

�0�
�e−1/	 − �� , �12�

c0Dt	 = 2sDpl�	� − 	� , �13�

C�s� =
��+1

�!
�

0

	s	

�	s	 − s��s�
� exp�− �s��ds�. �14�

The parameter 
0 sets the basic time scale of plasticity. c0
and �0 are parameters of the order of unity, which in this
work are taken as unity. The function C�s� quantifies the
stress dependence of the transition rate of individual STZs
between their internal states, parametrized here by �, which
describes the width of the STZ transition thresholds distribu-
tion. This choice is in fact a model of the variety of proper-
ties of STZs which does not affect the appearance of the
macroscopic equations. 	� is the long-time limiting value of
the effective temperature �9�. Note that the assumption that
� is small results in a separation of time scales between the
fast variables � and m and the slow variable 	. An important
feature of the constitutive equations is that the onset of ho-
mogenous unbounded plastic flow results from an exchange
of dynamic stability of the bistable field m; cf. Eq. �11�. For
s
1—i.e., a deviatoric stress below sy—the stable fixed
point is m= �sgn�s�, corresponding to jamming, Dpl=0. On
the other hand, for s�1, the stable fixed point is m=1 /s,
corresponding to flow Dpl�0 �with �=e−1/	�. This observa-
tion justifies our previous choice of normalizing stresses by
the dynamic yield stress sy. The consequences of the ex-
change of stability in the homogeneous equations is further

discussed below in relation to the cavitation instability in our
highly inhomogeneous configuration.

The full set of equations was solved numerically. To avoid
dealing with an infinite time-dependent domain we applied
the following time-dependent coordinate transformation:

� = R�t�/r . �15�

This transformation allows us to integrate the equations in
the time-independent finite domain �� �0,1�. The price is
that new terms are generated in the equations. This domain
was discretized uniformly with 301 nodes �checking a pos-
teriori that the results do not depend upon increasing the
number of nodes, meaning that the outer boundary is suffi-
ciently larger than the inner one�. Controlling the equations
at small distance required the introduction of an artificial
viscosity on the right-hand side of Eq. �7�. The term intro-
duced is ���2v, with � chosen of the order of the square of
the space discretization over the time discretization. Time
and length are measured in units of 
0 and R�0�, respectively.
� and m are set initially �t=0� to their respective fixed
points.

The first result to be discussed is the existence of a cavi-
tation instability, such that for �� below a threshold value �th

the circular hole attains an asymptotic stable radius, whereas
for ����th the growth of the cavity is unbounded, signaling
a catastrophic failure. The respective dynamics are demon-
strated in Fig. 1.

The value of �th can be estimated as shown in the Appen-
dix of Ref. �7� by considering the quasistatic and incom-
pressible analog of the present problem. For the parameters
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FIG. 1. �Color online� The time-dependent radius of the cavity
for asymptotically stable �solid line� and asymptotically unstable
growth �dashed line�. Here and below the parameters of the model
are 	�=0.13, 	�0�=0.1, �=50, �=1, and �=15. In these runs K
=100. Inset: m as a function of the time-dependent coordinate � at
t=104
0 for the two cases. For the bounded growth �solid line�, m
near the free boundary �=1 increases towards the jamming fixed
point m=1, while in the unstable growth �dashed line� m is at the
flowing fixed point m=1 /s with s�1. Wherever m�1 there exists
a plastic flow, while where m=1 the material is jammed.
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at hand �except for K=� and �=10� this procedure yielded
the estimate �th
5, in agreement with the present results.
For ductile materials such stresses are hard to achieve and
indeed cavitation instabilities were observed in the past in
ductile materials reinforced by or bonded to brittle materials
�10�. To understand the existence of instability, note that in
typical situations the stress at infinity results first in a rapid
elastic relaxation to the equilibrium solution of Eq. �9�; this
is how the level of applied stress is transmitted to the free
boundary. When the deviatoric stress exceeds the material
yield stress sy, plastic flow initiates, expanding the cavity
beyond the radius of elastic equilibrium. During this process
energy is dissipated and the stress tends to relax towards sy.
When the expansion is slow, the stress indeed relaxes to sy,
the material becomes jammed, and the growth is bounded.
However, when �� is sufficiently large the rate of growth is
such that plastic relaxation fails to reduce the level of stress
below sy, resulting in a cavitation instability. This discussion
is highlighted by the inset of Fig. 1 where the profiles of m
are presented. Note that in order to test these results experi-
mentally one needs not only to reach high values of stress,
but these values should be reached rapidly.

One learns a considerable amount of the physics of the
problem by analyzing the velocity of the free boundary in the
unstable phase. This velocity has three typical regimes; the
first is a transient in which s relaxes from its initial value ��

to a typical value somewhat larger than sy. The second re-
gime is very interesting, characterized by the fact that the
radius R�t� is the only typical scale in the problem. We thus
expect the velocity of the free boundary to satisfy an equa-
tion of the form

Ṙ/R = ����� � 0, �16�

where � is positive and time independent in this regime. This
exponential growth is accompanied by a self-similar solution
in all the fields of the problem, which can depend only on �;
cf. Eq. �15�. As an example we present in Fig. 2 the devia-
toric stress s��� and the effective temperature 	��� for differ-
ent times, including the onset of the third regime in which
self-similar solutions break down due to inertial effects. This
last regime manifests itself when the velocity of the free
boundary becomes a finite fraction of the typical elastic wave
speed; when this happens, we have a new length scale that
can be made from the typical wave speed times time, break-
ing the self similarity. In order to estimate the velocity in
which inertia becomes important we note that at low veloci-
ties almost all the elastic energy release goes to plastic dis-
sipation �below we show that the external work at infinity is
negligible�. At high velocities we expect that a finite fraction
of the elastic energy release translates into kinetic energy. We
thus want to compare the kinetic energy density of the me-
dium with the plastic dissipation density. The typical kinetic

energy density near the free boundary is given by �Ṙ2 /2. The
plastic dissipation density is given by sDpl
0e1/	. Consulting
Eq. �10�, one observes that near the free boundary Dpl
0e1/	

is of the order of unity and s�sy. Therefore the ratio of the
two energy densities is of the order of unity when

Ṙ � �sy/� � cs
�sy/� . �17�

Thus in this problem inertia becomes important at smaller
velocities than in the context of brittle fracture where the
estimate is v�cs �11� �recall that �sy /� is significantly
smaller than unity for most materials�. In Fig. 3 we present
the velocity of the free boundary as a function of time for
two values of the bulk modulus K. Observe the transient
regime, the exponential growth regime, where the problem
exhibits self-similar solutions, and finally the attainment of
an asymptotic velocity when inertial effects become impor-
tant. In our simulations �sy /�
0.14, and indeed the cross-
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FIG. 2. �Color online� The deviatoric stress as a function of the
variable � at different times. Note the transient short time, the re-
gime of self similarity, and the breakdown of self-similarity at long
times. Inset: the effective temperature 	���. Note the indistinguish-
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tically deforming region s�1 and 	�	�0� �plastic deformation
produces disorder�. Here the plastic region extends over R�t��r
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FIG. 3. �Color online� The velocity of the cavity as function of
time, for two different values of the bulk modulus K.
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over for K=100 from the self-similar to the inertia-
dominated regime occurs where Eq. �17� predicts. Increasing
K by two orders of magnitude �i.e., approaching the incom-
pressible limit� results in a further decrease in the crossover
point and in the asymptotic velocity. Qualitatively one under-
stands this as the effect of faster longitudinal waves whose
velocity ��K /� and which are able to “steal” energy from
the process near the free boundary.

Finally, it is worthwhile to consider the energy exchange
mechanisms in this problem. Note that in the standard ap-
proach of linear elastic fracture mechanics energy balance is
used to set up the “equation of motion” for a crack �11�. On
the contrary here we solved the boundary value problem,
including the explicit evolution of the free boundary, and it is
interesting to go back with this solution at hand to examine
the energy exchange. Energy comes in four types: the elastic
strain energy Eel, the kinetic energy EK, the plastic dissipa-
tion Wpl, and the external work Wext. We are mainly inter-
ested in the time rate of change of these quantities; these are
given as the following spatial integrals over the domain

�R�t� , R̄�t�� where R̄�t� was identified with the first of the 301
nodes of the coordinate �:

Ėel = �
d

dt
�

R�t�

R̄�t�
�ij

el�ijrdr, ĖK = �
d

dt
�

R�t�

R̄�t�
�v2rdr ,

Ẇext = 2���R̄
˙ �t�R̄�t�, Ẇpl = 4��

R�t�

R̄�t�
sDplrdr . �18�

Conservation of energy implies that Ẇext=Ẇpl+ Ėel+ ĖK. In
Fig. 4 we plot the different rates of change of energy, Eqs.

�18�, integrated up to 300R�t�. Ẇext equals the sum of the
three other time derivatives such that energy conservation is

satisfied. Note also that Ẇext is significantly smaller than the

other three time derivatives. Under this condition, Fig. 4
demonstrates explicitly how the release of elastic energy
drives the “crack,” converting this energy into plastic dissi-
pation and kinetic energy.

One question beyond the scope of this paper is the shape
stability of the symmetric cavity. This issue will be picked up
in a forthcoming publication. In addition, the STZ approach
should be applied to cracks in less symmetric situations. This
requires significant investment in tensorial generalizations
and in boundary tracking algorithms, which are yet other
issues under study.
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FIG. 4. �Color online� The rate of change of the various energies
in the problem as a function of time.
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